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Abstract—A sphere is allowed to move with three degrees of freedom in an axisymmetric flow field
and general formulae, correct to the third power of the sphere’s radius, are developed for the Stokes
resistance experienced by the sphere. These are shown to depend on the behaviour within the sphere
of the reflected velocity fields which arise from the presence of fixed boundaries at finite distances
from stokeslets placed at the sphere’s center. Application is made to the stagnation flow at a plane,
Poiseuille flow and flow past a sphere and some comparisons made with exact formulae. Solutions
are given for asymmetrically placed stokeslets ncar a hole in a plane wall or a disk.

1. INTRODUCTION

Many problems in chemical engincering concern the motion of a viscous fluid containing
suspended particles in the presence of fixed boundarics. When, as is often the case, the
viscous stresses dominate the inertia effects, the fluid flow is essentially described by the
creeping flow equations but this zero Reynolds number simplification has the disadvantage
of slower convergence of numerical computations because the hydrodynamic interaction
between a particle and a fixed boundary decays in 3-D only at the rate of inverse distance.
This same disadvantage also applies to the commonly used mathematical device known as
the method of reflections in which a solution is constructed iteratively by alternately
ignoring the boundaries and the particles. The restrictions placed upon particle size and
position by this weak interaction technique are eliminated by the recently expanded strong
interaction theories available from mathematical analysis applicable when it is possible to
fit all boundarics into a single family of coordinate surfaces. Thus for exact analyses the
geometry is restricted to two spheres or one sphere and a plane. Hence, for other geometries,
Ganatos et al. (1978) have developed a strong interaction theory in which a numerical
collocation technique is applied to exactly formulated solutions of the equations of motion.
It is amply illustrated by the calculations made by these authors (1980) for a sphere
between parallel planes.

There remains though the motivation to widen, alongside this computational progress,
the scope of mathematical analysis by developing a uniform approximation procedure for
a single sphere moving with the appropriate three degrees of freedom in an axisymmetric
flow. First order corrections in terms of the sphere radius have been listed by Happel &
Brenner (1973) for the force and torque coefficients and the second order contributions
arisc from the well known Faxén laws. In this paper general formulae, correct to third
order, are developed by an essentially simple, though algebraically complicated, applica-
tion of the method of matched asymptotic expansions which exploits the fact that near
the sphere the fluid is almost unaware of the fixed axisymmetric boundaries whilst away
from the sphere the latter appears as a point singularity. The “near field” solution is
equivalent to the Lamb’s spherical harmonic expansions employed by Ganatos et al. (1978,
1980) but in the “far field"”, the additional velocities are due to appropriate singularities—
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stokeslet, dipole etc.—placed at the center of the sphere and their calculation depends only
on the geometry of each directed singularity with the axisymmetric fixed boundaries. The
required strengths of these singularities are determined up to the third power of the sphere
radius ¢ by the condition that they be the same in the two constructed solutions. In contrast
to the method of reflections, only terms which can contribute to the required order of
approximation are retained in the calculation. The meridianal angle is measured. without
loss of generality, from the sphere’s center and the formulae obtained for the two force
components and torque involve values and derivatives of the imposed fluid flow and the
singular fields at the sphere center only. General experience with the application of
asymptotic methods suggests that the assumption that the sphere is small is unlikely to
be as restrictive as might be expected from the mathematical argument. Further. the
extension of the method to more than one sphere would appear to be plausible.

Application is made to three disparate cases—stagnation flow at a plane, Poiseuille flow
and flow past a sphere—in each of which the pair of force formulae are found to separate.
Theorems are given to show that the dipole fields can be obtained from suitable second
order derivatives of the corresponding stokeslet fields and to verify that for each of the
above cases the stokeslet fields are such that the reflected velocity component parallel to
the stokeslet is a symmetric function of the field and singularity positions. Comparison is
made with the strong interaction theories available for a sphere moving in a quiescent fluid
near a plane and for axisymmetric flow past two relatively moving spheres. A further
interesting application is to the pressure driven flow through a circular hole in an
infinitesimally thin plane wall, for which the axisymmetric stokeslet field was constructed
by Davis et al. (1981). Their solution is used to obtain numerical estimates of the force
coefficients for an axially placed sphere that show remarkably good agreement with those
calculated by Dagan et al. (1982) using the above mentioned boundary collocation
technique. When the sphere is off-axis, the force formulae do not simplify and there follows
the construction of the reflected fields due to asymmetrically placed stokeslets. The normal
velocity component at the wall is cancelled by an obvious extension of the axisymmetric
solution. However the cancellation of the tangential velocity at the wall requires a field
whose every Fourier mode except the zeroth leads to two connected sets of dual integral
equations. These are solved by reduction to a single Fredholm integral equation whose
solution can be written down by inspection. The relatively minor modifications for the
complementary disk problem are included for completeness.

2. FORMULATION OF THE PROBLEM
The equations of motion for a Stokes flow are

grad p = uViq, divg=0 [2.1]

where q(x, y, z) is the velocity field, p(x, y, z) the fluid pressure and u the viscosity. In
addition q must satisfy the no-slip condition at any solid boundaries.

Let the cylindrical polar coordinates (p, w, z) be related to the above Cartesians by
X =pcosw, y = p sinw and consider an axisymmetric flow field W(p, =} bounded inter-
nally or externally by an axisymmetric boundary S which may or may not intersect the axis
p =0. Then W satisfies [2.1] and vanishes on S.

Suppose that this flow field W is disturbed by the presence of a small solid sphere of
radius ¢, which is moving with velocity U*x + V*Z and rotating with angular velocity Q*y
and whose center is instantaneously at (xg, 0, z,). These three components are the only ones
which can be induced from rest by the axisymmetric flow. It will be assumed that the
Reynolds number of the flow is sufficiently small for inertia effects to be ignored. Then, in
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Figure 1. A sketch of envisaged flow.

this quasi-static approximation, the disturbance velocity field w(x, y, z) satisfies [2.1] and the
boundary conditions

w=0 on § [2.2]
w=0 as (p?+z2)"->w [2.3]
q=W4+w=U*3S+ V*: +Q%(c —z)% — (x —xp)3] at r=¢ [2-4]

where ri=(x —xo P+ + (z = 2)-

The required quantities here are the force (F.% + F.Z) and torque Ly exerted by the fluid
motion on the small moving sphere and will be calculated up to terms of order ¢* by a
method based on inner and outer expansions. For small values of ¢, the fluid near the sphere
is essentially unaware of the fixed boundary whilst to the fluid far from the sphere, it appears
to be a point singularity. The use of inner and outer coordinates can be avoided since all
expansions are regular in e.

3. DERIVATION OF THE FORCE AND TORQUE FORMULAE
The imposed velocity field W = W,(p,2)p + W(p,z)? has Cartesian components
W, =(x/p)W, W,=(y/p)W,and W, and for the purpose of satisfying condition [2.4], a
suitable expansion of W in the neighbourhood of (x,, 0, 2,) is required. The Taylor expan-
sion is simplified by the divergence free property of W and by the even, odd and even
dependence on y of W,, W, and W, respectively. However, since [2.4] is to be applied at
r =¢, a suitable representation of W in the “inner field” is

W = curl [X(r, 0, $)F] + curl [¥(r, 0, ¢ )7] [3.1]

where
Vi(r-'X)=0 (3.2a)
VY(r-'¥)=0. (3.2b]

Because the above mentioned Taylor expansion is symmetric in the pairs (x, x,) and (z, ),
it is convenient that the spherical polar angles in [3.1] be defined so that the axis is in the y
direction. Thus write

x — Xo=r sin @ sin ¢, y=rcos#, z=rsinfcos¢.
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Then, when the Taylor expansion of W up to second order is written in the form (3.1). it
follows, with P," denoting an associated Legendre function, that:

L/oW. oW.\ . . ,
X~§ - r"Pl(c059)+ﬁr'P3‘(cos())(a‘cosd)—b, sin ¢) [3.3]

¢z ox

o, _ ) Léw,
¥ ~ 2P, (cos O)(W,sin ¢ + W, cos ) + g%rr}Pl (cos 0)

1 R oW, oW, CW. CW.\ .
+——r3P3*(cos())|:—<———‘-L ')code) +(((" +%t—')sm2¢>]

36 0x oz

1
*3 riP,! (cos 0)(a,sin ¢ + bycos §) + r'P,' (cos O)(a, sin d + bycos @)

1
+ 335 rPy (cos 0)aysin 3¢ + by cos 3¢). (3.4]

Here the disjoint sets of coefficients {¢,: 1 <j <4} and {h;: | <j <4} are given by

W, W, W, W, W, W, W, W,
al = = - + 5 ] > bl = - - + ﬂ. - 3 -
0xdz  dxdy ozt ay? oxdz o dyls dox- Oyt

LW, W)\ (W, 3w\ 1 _, L,
ay= —= : - = —G VW a= g VW,

) 4\ 0xdz ~ oxd 'y 4\ ax? ay? 20
| 02W 02W | (‘JZW‘ 02W_ | ]
b7=—— DERAES SR —_— | — - —— ZW, - 3 ‘
i 4(0.(0: Oy(?:) 4( 0zt oy? ) zov - b 20V W, (3.5]

10w, 3w\ | _, 210°W, &FWN\ S[0W,. W,
(14=§ —7—_—’:——’—7—' '——V'W(‘*'— "";"—'2“———:,-—2- Bl Ber-wor v
oxdz  Oxdy 6 3\ @z dy 6\ Ox* oyt

b L(EW,_OW, ooy 42 W, W\ S[0W. 0w,
‘T2\oxdz T ayez ) 6 T3\ axr ayr) 6\ a2 4yt

and the components of W and their derivatives arc evaluated at (x,, 0, z,).
Now if the additional velocity field w is represented in the form

w =curl {x(r, 0, §)F] + curl* (Y (r. 0, $ )] [3.6]

where y, ¢ satisfy [3,2a, b] respectively, then [2.4] implies that ¢ and ¢ must satisfy the
boundary conditions

x+ X=Q*cos0

¢/+W=-l2-r25in0(U‘Sin¢+V'COSd)) at r =c. [37]

g—(lll+‘!’)=rsin0(U"sin¢+ V*cos ¢)
or

The other boundary conditions [2.2] and [2.3] on w apply to the “outer field” where the
representation [3.6] is inappropriate.
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Expansions [3.3] and [3.4] show that the reflection of the imposed velocity field W at
the sphere boundary r = ¢ can be obtained by constructing the sets of fundamental velocity
fields curl [y..(r. 0)F<me]. curl [y & (r. 0)Fimme] (i =0, 1) such that, for 0 <m <n and
nzli

h
mn

x"""}‘wr"*anm(COSO). 24’"~r"*3f’""'(c059) as r—-w

[xmn ¥4, satisfy [3.2a, b] respectively]
L,=0=y" =— 0 w‘" at r=c

Then, by elementary calculation,

2n + 1
Xnn = <r"+l - ‘ " ) an (COS 0) [38]

(0!=[n+l (n )‘ (n_l)eh:l]l’,,’"(cos())
2) r

u)__[ ( )Ml (n+1>£:|1’,."'(0059)
2) r

In [3.9] the restriction n>1 ensurcs that all reflected velocitics vanish as r—oco.
Corresponding to the solutions [3.9], the net force excrted on the sphere by the fluid is
again zero for n>2 and when n =1 is 12ruc(é, £, 7) for Yy N cos @, ¢{)sing, ¢
respectively and 20ruc’(Z, £, §) for ¢!} cos ¢, ¢ ') sin ¢, Y!} respectively. Effecuvely there
is a force — 8nu(3, £, §) duc to cach stokeslet term (= — 24, X — X, y) respectively in ¢ but
none otherwise. Similarly the solutions {3.8] yield a nct torque exerted on the sphere by
the fluid which is zero for n > 2 and when n = | is 8ruc’(Z, X, y) for x,, cos ¢, x,, sin ¢,
%01 respectively. Thus there is a torque —8mu(Z, X,y) due to each rotlet term
(z = 20, X — X, 1) respectively in x but none otherwise.

The contribution to w due to the reflection of the field W by the sphere without taking
account of the fixed boundary S can now be written down by comparison of {3.8] and {3.9]
with [3.3], [3.4] and [3.7]. Thus

n=1) 39

W, W,
1+ X —-Q*cosl = x(,.[ (0 %——;‘)-—Q‘]+%x,_z(a,cos¢—b,sind))

+ further terms {3.10a)

¢+‘l’—%r sm0(U"‘sm¢+V‘cos¢)=-2- YOIW. - U*)sing + (W,— V*)cos ¢]
L oW, L [(oW, oW, aw, aw,
t5vigy +36"’(’-5[( 5z T ox ) n2 - (T"T) 524’]
+ w"’(a, sin @ + b,cos @) + Yi'l(aysin ¢ + by cos @)

+ ﬁ ¥"(a,sin 3¢ + b, cos 3¢) + further terms. [3.10b)
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Consideration of the n = | terms in [3.10a, b] shows that, at this stage of the calculation,
the torque is in the § direction and normal to the force, in agreement with the axial
symmetry of W. Further, of the eight ccefficients given by [3.5], only the Laplacian pair
a; and b, can enter the required formulae for F, and F, whilst none affects the torque
coefficient L. Evidently the neglect of higher order terms in the expansions [3.3] and [3.4]
causes no errors in the F,, F, and L formulae since powers of r >4 in [3.3] and =5 in
[3.4] yield values of n =2 in [3.10a, b].

The further terms in [3.10a, b] involve positive powers of € and are due to reflections
from the rigid boundary S. Since only terms up to order ¢* in the *“‘far field™ are sought.
it follows from [3.8] and {3.9] that y,,. ¥{'} and ¢{} may be discarded from [3.10a, b].
Then the remaining functions are given, to the required accuracy, by

, €
Yo = (r~ - ——) cos 6,
r

3

, 3 . S
Yy = (r* ~zer + §—r> sin), ¢y = [r’ -—Ee" + O(e’)]Pz(cos 9) [3.11]

i = [r‘ - gc‘r + O(c5)] sing, yP= [r’ —-ge’ + O(c’)] Py (cos 9)

where P, (cos 0) = 3 sin’ 0. So the “far field” behaviour of [3.10a, b) contains, to order ¢*,
terms which correspond to the following velocity singularities at r = 0. From yx,, there is

- ing
curl <°°: v f) =300 g L g = (= )] [3.12]

r- r

which is a rotlet in the § direction. From ¢{% and ¢§'l, there are
) 11 I

ot ol X = l :
curlz(r sin0F o ¢>=-’5(‘ ‘°)+_<.> [3.12b]
cos r’\z—-z r\z

which arc stokeslets in the ¥ and 7 directions respectively. From ¢, there are

L{sin0 , sin 3Ffx — x, I /x
rl? = - 3.12¢
curl ( F " cos ¢) r‘(: —-:(,) r\z [ ]

which are dipoles in the ¥ and 7 directions respectively. From ¢ {} and 3, there are

-~

— :—l P, (cos 0)F d/0x, : 3 0/0z, 2 .
curl® cos =| —d/0x, [;5 (x —x))+ —] + | d/0z, [;—2- (z —z)+ ;]
3 P, (cos 0)F sin 2¢ d/0z, 2/0x,

[3.13]

which are combinations of the x, and z, derivatives of the stokeslet singularities. The
remaining combination yields the rotlet singularity [3.12a].

The additional terms in the expressions [3.10a, b] for x and y arise firstly from the
reflections by S of the above singular velocity fields. Let £2, U, V, u and v be velocity fields
which satisfy {2.1]. {2.3] and are such that
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5

I
Q= -r-j [(z = 2p)% — (x — x0)2),

»

F X F Z
U==(x—-x)+- V==(C-2)+-
r’ r rl r

> on S. [3.14]

Then the required singular velocity fields, satisfying [2.1], [2.2] and [2.3], are
I . s
= [(z —zp)x = (x — xg)3] — Q(x, ¥, 2 X, 2p) (rotlet)

r X
—{(x —x) + e U(x, y. 2 X0 29)
s

(stokeslets)

r z

= (2 =)+ - = V(x, y. 20 x0. 20)

r r

3 X

—{x—=x) - - u(x, y, 23 Xo. Z)

r r

(dipoles)

-
-
-

3r
p (- —2y) - i v(x, ¥, 25 X 2p)
and, from [3.13]

2
(l - %‘) F = 0UJdx, — dV[dz,

rl

¥ ,

Z20E = 20— (x = xof] + 0UJx, = 0V,
6r
2 (6 = x)E = 2) = Uz, — V/2x,

The remaining combination of derivatives yields an expression for  in terms of U and

V, namely
1/oU aV
Q-IE(&_ZO—E;,)' [3.15]

The expansions near r = 0 of these reflected velocity fields are required to second or
zcro order in r according as the corresponding singularity in [3.11] is of order ¢ or ¢}
respectively and are of the same form as that given for W by (3.1], [3.3], [3.4] and [3.5].
Only the first term of [3.4] contributes to the zero order terms of W and the required
expansions of ¢ U/dx, etc. can also be written in the simpler forms

cu 1, . Teu, . au. .
P__‘_;.vcurl {fr sm()[axo sin ¢ +a—x0cos¢]r},etc.,
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provided it is understood that x, and =, derivatives are taken before (x. y. z) is set equal
to (x,. 0. z,). Since, for a differentiable function f,

¢ ¢ ¢
[«. S(x, xo)} = T—f(xo- Xo) — ['.,__f(-‘ xo):\ (3.16]
C x() = Xy [ 1=

the consistency with the result obtained by differentiating the Taylor series of U is evident.
Thus the disturbance velocity field w has “outer field” expansion of the form

W ~ A(e)[curl’ (r sin @ 7 sin @) — U] + B(e) [curl* (r sin 6 F cos ¢) — V]

+ Ci(e) curF(% sin()r"sinq&) ]+C’(e)|:curl< sm()rcosd)> ]

an N\ du v
+ D\(¢) Cur|‘<—§P3(cos())r>—(—q_c_]

[ I
+ Dy(¢) curl’(() P, (cos 0) F cos 7¢)+___
(

[ U ] A Y
+ Dy(c) ]| curl (5 Py’ (cos 0) 7 sin 2(/>> __ ‘__:I

- e
0z, 0X,

+ E(c) |:Lurl <~ cos () r) - Q:| {3.17]

where, as observed carlier, [3.10a, b] and [3.11] imply that A(¢), B(¢) = O(¢) whilst the
remaining cocfticients are O(¢Y). Then the reflected velocities due to S are themselves
reflected by the sphere in the same way as the prescribed flow W and so the required further
terms in [3.10a, b] may be written down by comparison of the singular field expansions
with [3.3], [3.4] and [3.5]. Thus

W W. | 0 )
1+ X =Q*? cos()_[‘,,[z(a——_i-‘) Q*__A(()(_U_-(_g_>

oz dx Ox
1 OV OV
- B(() e + 0(c?Y)
+ torque-free terms [3.184]

¥ +‘P——%r35in()(U‘sin¢+ V*cos¢)=;¢‘,‘f}[(W‘—U‘)sind) + (W, —~ V*)cos ¢}

o oW, W, oW,
aw(m cW, 5l_6_ '_,‘_’;[(‘_(;TV‘+0 )sn2¢ (ta\" (( )Los"d’]
au,

|//‘”(V W sing + VW, cosd))—A(c){ YU, sing + U, cos¢)+ %oé o

l au, eu, U, aU,
— YD = n2 =~ —)cos?2
* 36¢'" |:< ez * (7.\') - <(’.\‘ éz )LOS (bjl

+35 w“’[VU sm¢+VUcos¢]}—B(c){ YV sing + V.cos @)
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rgvinr e un (G 5 uin2e - (52 - 55 Jeon20

+35 W”[V°V sin ¢ + V2V cos ¢]}—-lﬁ‘°’ {Cl(e)(u‘sind: + u.cos d)

+ Cy(e)(v, sin g +v.cos d) + E(e ), sin ¢ + Q.cos @)

oU, . . aU.
+ [Dy(¢) + Di(¢)] [ 2, P ]
+1D,(6) - Do) [ZV sin ¢ +%’_ﬁcos¢]
au, v, U, dv,
+ D,(e)[( 3 T @ 0) sin¢ + (5-0 E )cos d)]}
+ O(¢*) + force-free terms. [3.18b)

Equations for A4 (¢) etc. can now be obtained by using [3.8] and {3.9] to equate the strengths
of the respective singularities at r =0 in each of the velocity ficlds given by [3.17] and
[3.18a. b]. The force and torque exerted by the fluid on the sphere are given, from the
stokeslet and rotlet singularities, by

FX+F:=-=8nu[A(c)x + B(c)?)
Ly = —8rnuE(c)y.
The effective Stokes relative velocity components (6muc) ~'(F,, F.) = — (4/3¢)[A(¢), B(¢))
ar¢ then found, after eliminating the other coefficients from the above mentioned

equations, without inverting any expansions, to be given to order ¢* by the simultaneous
equations

F 3 1 1 F, 3 1 1
P —ZeU -Cu — -¢'V? S Y 7 —Yy 32
{I 4£ }.+4c u, € U’}+6nue{ 46 =€, 8£VV_,}

6mpe 8 4

—w,—u*+é W 4 [ (‘%’-%’xﬁ)—n* Q,—gc’Q, 3.194]
%"“{—%cU_.+%c’u:—éc’V3U:}+6:i{l—ch:+%c’v_.——%e’V3V_.}

~ W= VOOVt [2(‘3‘5 ‘7‘;’:) Q‘]Q -2 [3.19b]

where the coefficients of F, and F, depend only on the location of S relative to the point
(xg. 0. zp) and the velocity components Q,, O, are given by

_[ow, 1fow, ew, ow, 1fow. aw.\] @
(Q.0.)= [—y 3(_(7:—?;)] (U"U)+[6y (6t 7:—)]6-0”/ V)

1 /OW, oW. U U, _—
3(_5___+(7 )[(,_u( )+ (.. )] [3.20]
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Also the effective relative angular velocity is given by

L =

8muc’

- %(%—%)-Q‘-{—ge{(l +§eU‘>(W,—U“')+§eV‘(W:— ;*)}(%U--‘i_(i)
+§e{%eU:(W_(—U‘)-{-(l+§eV:>(W:—V*)}(%—%)-}-O(e") [3.21]

after inserting the O(¢) solution of [3.19a, b]. Here the O(1) term is that predicted by
Faxen's law.

For the neutrally buoyant sphere, U*, V* and Q* are chosen so that the force
components and torque are all zero. Then, from [3.19a, b] and [3.21].

1 S
e W AoV =D
U '+6( T3¢ Q.

Ve~ W:+éc:V3W:—~§(’Q: . (3.22)

oz ox

] o]

Q* ~ %(‘ W, _ ¢ W") + 0
Thus the velocity components Q, and Q., which depend on the imposed velocity field W
and the location of § relative to (x,, 0, z,), indicate the accuracy of the estimates of U*
and V* obtained by the use of Faxen's law.

For a freely moving sphere whose density is A more than that of the fluid, the buoyancy
force —%ne*Ag? must be balanced. Then, on inserting F, =0, (F./6nue) = 2¢2Ag /9y and
L =0in [3.19a, b] and [3.21] respectively, the first two of equations [3.22] are replaced by

U* ~ W4 g VW, = 00+ OV g b

4
V*~ W,+éczV2W_.—ge’Q:—-ez(i——cV_.)Ag/mz

whilst the last is unchanged in form.
In the axisymmetric case F, and L vanish whilst [3.19b] reduces, with the aid of [3.20],

to
1 5 ,0W, oV,
e VP WW o
£ W, V+6cV _+4€ R ™

6nuc -

{3.23]

3 | 1,
l -—Z(V_.-f-:‘-("lv’_.—gC)V'V_.
This particular result could have been obtained more simply by applying the above
procedure to the Stokes stream functions of W and w.

The formulae [3.19a, b] and [3.21] represent the superposition of the force and torque
results for a moving sphere in a quiescent fluid (W =0) and a fixed sphere in a moving
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fluid (U'* = V* = Q* = 0), which cases have usually been considered separately by previous
authors.

The singularities in [3.8] and [3.9] are evidently those which appear in the Lamb's
spherical harmonic expansions employed by Ganatos et al. (1978, 1980). The difference
between the two methods lies in the way in which the coefficients are determined. In the
boundary collocation technique a solution satisfying [2.1}-[2.3] exactly is constructed and
a finite number of singularity coefficients determined numerically by applying condition
{2.4] at a finite number of latitudes and longitudes on the sphere. In this section, the fluid
flows incident upon the sphere have been expanded about its center in order to construct
two solutions [3.17] and [3.18a. b] for w, the former valid away from the sphere where [2.4]
can be ignored and the latter valid near the sphere where [2.2] is immaterial. The
coefficients of the singularities were subsequently determined up to a chosen power of the
sphere radius ¢ by requiring that they be the same in each of [3.17] and [3.18a, b].

4. DERIVATION OF u, v FROM U, V: SYMMETRY OF U, AND V,

The calculation of the dipole reflected fields u and v can often be avoided by means
of the following result, obtained by use of standard Cartesian tensor notation. Let
t,(P. P*™) be the jth component of the velocity field at P(x,, x,. x;) due to a stokeslet in
the direction of Ox, at the point P®(x,®, x,°, x,) and p, the corresponding pressure field.

Then

1 l 2u
i = ; ‘S/k + o (x— x/m))(xk - ), P = I’ (x — x,™) (4.1]

where 7P = (x, = ;") + (x; = x,")* + (x; — x,™)?, and, from [2.1],

apk b 02’;1:
—_— = < = 4~2
0x; HV b= H dx,0x, [4.2]

i

Also let — TP, P) be the jth component of the reflected velocity field due to the rigid
boundary S, i.c. T(P, P®) = 1,(P, P”) when P lies on S. Now the jth component of the
velocity field due to a dipole at P in the direction of Ox, is

2 (‘k“_x*"”)= Ll Loy,

AU 24 0x, 2

)

2
1 d%,

1
BT U AL

after using [4.1] and [4.2]. Hence the reflected velocity field due to the presence of S in this
dipole field has jth component — T given by

TP, P%) = ~ 2 VATE(P, PO) (4.3

where V7 is the Laplacian with respect to the position P® of the stokeslet. Thus, to
evaluate the ficlds u and v in terms of U and V, the stokeslets must be first moved to
(X4, ¥o. Z0) and then y, set equal to zero after application of the operator V,*. Hence

1 02 a2 ik
u(x, ). 2 X So) = — = [( + + -5_—3) U(x, y, z; X, Yoo 20)] [4.4]
<0

2 F()2 W vo=0
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and similarly for v(x, 3. z: Xo. 5,). In terms of polar coordinates, this procedure is much
simplified for v since then, with x, = p,.

v(p cos . p Sin W, Z: py. =)

[/ ¢° 1 ¢ | é? . .
— 4 ———=+—— | V(p cos w. p sin w, =; py COS Wy, p SIN Wy, Zy)
| \Gp’  podpy  po’ Oy g = 0

—

WaE 1 ¢ 1 ¢ & .
= —t—— 4+ ——— 4+ | V(p cos (w — wy). p sin(w — ay). =, ,z):l
_(690' PoOpy Py’ Oy’ 630') g ( v-p ’ Por 0

[ X1

g =0

1/¢* 1 ¢ (G é’ .
==t — 4+ — =+ =— | V(p cos w, p sinw, 2 py. Zo)- {4.5]
2\0ps°  polpy Py w7 Oy

As the g and £ directions do not coincide when y, #0, there is no corresponding
simplification for u.

Substitution of the result [4.3] into the left hand sides of [3.19a, b] shows that the third
order terms have the alternative form

u, U, U,
1 ju 1 .| U | . | U.
- — = — -}V, : : 4.6
4( , 'V v, 8( (Vy"+ V7)) v. (4.6]
; V: V:

where, in all quantities, (x, y, z) is set equal to (x,. 0. z,) after all differentiations have been
completed. Clearly [4.4] shows that, if either component of U or V is a symmetric function
of the stokeslet and ficld positions, then the corresponding two terms above are equal.

The symmetry of U, and V, is ensured by the following result, obtained by applying
Green's theorem to the fields (4 — T%)ppoy and (4, — Ti)ppny, and simplifying as in
Happel & Brenner (1973), section 3.4

TP, PO) — TE(P™, PY)
! (5) 2 ) J -
= g . (’/k"‘ T/k )(P.Fm) n/V'(ljl; - T}/} )(PJ’(I!] - & (’/k - le )(P.F”)

. ’
T (’,k - T;i:n)(r.n") [”lv'(’,k - T;i?)cr.ﬁ'") - ;1"; (’,/: - T}P)(P'P“”)]} das [4.7]

where the normal n to S is directed into the fluid region. Now the condition that 4, = T
when PeS makes the right hand side of [4.7] vanish and then 742, the component of
reflected velocity parallel to the stokeslet, is a symmetric function of the field and stokeslet
positions. So the velocity components U.(x. ¥, 23 Xo. }y. Zo) and V.(x.y, i Xo. Vo, Zo) are
symmetric functions of (x, »,z) and (X, yo. Z0)-
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5. STAGNATION FLOW AT A PLANE

Here S is the plane = =0 so the velocity fields Q, U, u, V and v evidently depend on
(x — x0). (v — yo). = and =, only, with y, set equal to zero. The boundary conditions [3.14]
imply that Q,, U,, u,. V. and v. are even functions of (x — x,) whilst Q.. U.. u., V, and
v, are odd functions of (x —x). When these properties and the stagnation flow
W = Az(— xx — yy + zZ) are substituted into [3. 19a, b}, it follows that the equations for
F, and F, separate to yield

Folo3 1, & 5

it I T Z — WV ~ = AX — U —'Q*Q — 2 ¢!} .
Se l:l 4eU_‘+4e u, 8‘ U‘] Xooo — U* — 'Q*Q, € Q. [5.1a]
F. 3 1 1 5

_ —ZeV. - — =V ~ A= VP00, .
61t[1€[l 46 _+4£l‘ SeV :, Az 4c Q. [5.1b]

where Q, is given by [3.15]) and

1 au,. ov av.
= - y < —t = —- 2 S0 —. 2
Q. 3 A-‘(l(a:o + 3.\‘0)‘ Q. Azy - (5.2]

0

Also [3.21] takes the form

L 1 3 3 (U, U, ,
87:/1("— "‘5/\.\‘0—Q‘+§( (l +Z(U‘)(_A.‘O~"— U )<_('E'_ -K)+O(c ). [5.3]

Now, from Blake (1971), the required stokeslet velocity components are given by

-3

2 P 220
V-- =X Vv 2 0 = s 313 r =3 ) 1+ =3 3
R S G TR A G T A G T
_ 652z,
[0+ (- + -'())Z]S/Z
1 (x —x,)° 22,
X =X 220 = - ¥ 1+ - B} 1+ - /2 .4
N A e LA A e A Py ey L
_ 6:z(x — x,)°
FrGErT
(OU\' _ g_g_-) - _ 2z —z) _ 6:4(x — x,)
320X Juerg P FCE TR [P +2)T J

where g° = (x — x,)’ + y*. The symmetry of ¥, and U, in z, =, ensures that [4.4] yields
v.= =iV, u = — VU, in formulac [S.1a, b] respectively whilst the expression for
¥ - curl U shows that the torque formula [5.3] reduces to

=~ ! Axy = Q* + O(c?). [5.5]

Evidently U, = {V, when j = 0 and, since (@V,/0x); .o = — ¥@V./@z); .o by continuity, it
follows that

—=-——=—when §=0.
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Then the symmetry of U, in =, z, implies that Q, vanishes in {5.1a] and

+ o)
Czy  @xq 2 4z

in [5.2]. Thus. by substitution of [5.4], the force formulae {5.1a, b] reduce to

5 o,
F —Axy, — U* + T3 Axyetizy’

2] .6
ST 2 gz 4 ez oo
16 /T Tgleis
. 1, 15
g ATVt A F N, »
Oruc [3-6b]

9 I
1 "g(f/:o)‘f"z‘(f/:u)}

Note that x, does not appear in [5.6b]. Comparison of the force formulae [5.6a, b] with
their counterparts (Brenner 1962) for the same sphere moving in a quiescent fluid bounded
by a plane wall (the case A =0 = Q*) shows that the relative velocity components appear
in the leading terms, as expected, only {5.6b] has the Faxen law term (order ¢°) and both
have an O(c’) contribution arising from the rate of change of the imposed axisymmetrical
flow W,

Further, a closer examination of the O(c*) terms int formula [5.5] shows that they
depend on the stagnation flow and the sphere’s translation as well as the geometry of the
flow boundzrics. The O(c*) terms on the right hand side of [3.21] can be written down from
[3.17) after noting that Dy(c) = O(¢*) and taking account of the odd and even functions
of (x ~ x,). Thus {3.21] has the form

L E(e¢) 1 1 du, Ou, l . Q. 0.
= — ——— = - A.v(,—Q*—;z-C.(c)<—5:— -—-(7}; -—§ﬁ(() —5:—- _——_ ‘+ O((‘)

By’ s 2 ox

where Cy(¢) = %(— Axyzy— U*). Then, by observing that VU is conservative, the
expressions (5.4) suffice to show that a more accurate form of [5.5] is

] 3
L =53 Axy—Q* + 3_7 (¢ /:0)"(/\—"1):0 + U*)/z,

8rpc’

[5.7]

5 3
1 - '1_6'((-/-—0)

where the denominator correction is geometrical whilst that in the numerator indicates the
creation of vorticity at (x,. 0. z,) by the dipole solution excited by the relative velocity
component (— Ax,z, — U*) parallel to the plane. The axisymmetric geometry precludes a

similar contribution from the normal component (Az,)’ — V'*).
Table 1.
é 1.0 1.5 20 25 3.0
(24 =sech & 0.6481 0.4251 0.2658 0.1631 0.0993
F 6nul* ~ 14937 —1.2979 ~1.1726 ~ 1.1003 ~ 10590
O'Neill (1964) - 1.5675 - 1.3079 ~ L1738 — L1006~ 1.0591
Flibrub e ~24569  —1.7852 — 14077 - 14 - 11252

- 1.2220 ~1.1252

Brenner (1961) —3.0361 — 1.8375 — 14129
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The accuracy of the third order truncation can be assessed in this case by comparison
of [5.6a.b] with the corresponding exact solutions in bispherical coordinates given by
O'Neill (1964) and Brenner (1961) respectively for a moving sphere in a quiescent fluid.
On setting A = 0, the numerical values obtained are displayed in table 1 and show, as might
be expected, closer agreement for F, than for F.

6. POISEUILLE FLOW
Here S is the cylinder p = 1 so the velocity fields £2, U, u, V and v evidently depend on
X, Xp. v and (z — z,) only. i.e. p. pyp. w and (z — z,) in the notation of [4.5]. The boundary
conditions [3.14] imply that Q_, U,, u,, V. and v, are even functions of (z — z;) whilst Q,, U..
u.. V. and v, are odd functions of (- — z,). When these properties and the Poiseuille flow
W =!G (I — p?)7Z are substituted into [3.20] and then [3.19a, b]. it follows that

0.=0, 0.=0

and hence, on using [4.6] and the symmetry of U, and V., the equations for F, and F, again
separate to yield:

F 3 | S
x . Wy - * A
———mll—-—(U,——( U“l_—-U [6.1a]

F. 3 l Wo? l 5 l , \ l
- —= V. ==V, [==G(l —p) - V* =2 ¢ M= Gp,—Q* ). [6.1b
6,,“([| 1V 4fVV.] 76 =) £CG +e (40,;0 Q)Q_ (6.1b]

Also [3.21] takes the form

L
8ruc’

! 3 3 I v, o,
= - —Q* 4= - - P 74 I 1
=3Gm -0 +8c(l+4cV:)[4G(l p) —V ](D: ax>+0(‘ ). [6.2]

Equation [6.la] shows that F, vanishes when U* is zero, as expected because the
reversibility of this Stokes flow indicates that the sphere can be ncither attracted to nor
repelled from the cylinder wall.

The solution for the Stokes flow in a pipe due to an arbitrarily placed and orientated
stokeslet has been given by Liron & Shahar (1978) in terms of the velocity representation
used by Happel & Brenner (1973, p. 77), so only the following brief description of an
alternate more direct but novel solution, which displays the symmetry of V, and U,, is
included here. Such symmetry is predicted by applying Green's theorem, as in section 4,
to the fields generated by two stokeslets placed in the p direction(s) at (p, w, =) and
(P, 0. 2y).

The boundary conditions on U and V are, from [3.14],

1 . cosw—p,,. . s
U=F-"+—_RT"_Q[p_p"x+(:_:°):]
l| _ -l a[p:l, [6.3]
V=E.§ +"—k+°[;3—p(y€ + (=~ z)?]
1 1
where
l - hl h
'R—=[| +ﬂn""2ﬂncosm +(: _:ﬂ)-]—“J
1

2 (= . , ,
=;f I(o[/.\/(l + po* — 2pycos w)] cos A(z — ) dA.
0
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These suggest the introduction of the Fourier transforms

[(U p+ U,d)cos d(z —z,) — .2 sin A(z — )] dA

=l\u

H

]

J‘ [”‘,p + P d)sini(z —z,) + V.2 cos A{z — )] dA [6.4]

with corresponding pressures

b= B ]

p.== J ' P, Cos A(z — z) dA, D= J P.sin A(z — zp)dA.
T Jo 0

Then the calculation can be reduced to that of four transformed fields
W + %0 + w2y, j=1.2,3.4}

such that

~

- N - .o N - 4 RN -
(W + %0 + w3, | = [.\'(),, + pdy, + 2 (0\, + 8y 57 oA )] K4 \/(' +py” ~ 2py cos w)].

[6.5]
where 8, is the Kronecker delta, since then
V.= A(w® — pw!V + w) 4 20
0 +
= (= pott™ + u™y + 2V [6.6]
Cpy
with corresponding expressions for P, P, p.. 0, U. and p,. On writing
“'/) “’"(/)
wll = % ¢, dw, ") cos ma, p =2 Z v, sin mw (6.7)
py " (pa me!
where ¢, =1, ¢, =2 (m = 1), it follows that since
KO+ pot = 2pgcos )] = 5 ¢ K () (2p)cosme  (py< 1),
m =)
the boundary conditions [6.3] imply that the Fourier components are such that
“L‘,’— t + l‘iv‘n)- l],n - = Km(;')[m(;‘pﬂ); [vm(n]ﬂ - = (./ = 2‘ 3‘ 4) ('" 2 l)
[ ”) _lm&I)p-I-l\m(")I (’/’0)_[“‘]:’-1—[" ]l”‘l
[“.mm]” o= [“'mm]n o= [u,,,‘-"]“ = [l‘mm]‘,,l =0 (m > 0). [6.8]

[".'"N)L, -1 = —-:—T [Km(;')lm(ip())]
A
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These fields are now determined by applying the creeping flow equations [2.1] which
yield, for each j (suffix omitted for convenience) and each m > 0:

é .+ mu,
ﬁ_{»u mt —w, =0
cp p

2

& 1d ,

do* " pdp
d 1d . (mtl)z:l - ljdp,,I m ]
—A* = 7 Uy 2 V) =p " == F = Pm
[ pE ( )=H P pp

—_— +
dp® pdp
Now since the fluid pressure satisfies Laplace’s equation, it follows that

Pm =21, (A (Ap) (m=0)

whence
dp,, _m

—=F —p,, = 2urq, (), . (ip).

P pp HAq +IAP

Thus the equations for w,, and (u,, + v,) are of the sume form and have solutions
1
Won = Gl 1 (Ap) + 2 0D (Ap) - (m 2 0)

l
“mi U = qm(}')p[m%l ;l(}'p) +Ismt(l)lmgl()‘p) ('n ? I)

1
uy = qy(A)pl(Ap) + I so(A)(4p).

The continuity equation shows that

24, () + 35, (A) + 5,7 (A) = 2r,(A)=0  (m21)

5o(A) = ry(4);

Hence, if m =0, the unknown functions ¢,(4) and ry(1) are given by

L) + 5 ) = )y
1
qu(A)(A) + 1 ro(A)(4) = (wg), <)

whilst, if m 2 1, the four functions q,(4), s,*(4) and r,(1) are given by
1
qm(l)lm+2(l)+I"m*(l)lmo-l(l) =(um+vm)p-l
1
+Ism—(i)1m—l('{)

= (um - vm)y-l

(A (1)
+ ;11- F(A(A) =(Wp), a1

qm(}‘)lm + I(l)

2q9.(2) + 5,7 (1) +s5,"(4) =2, (1) =0.

MF Vol. 9 No. 5|
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Here the determinant of coefficients is 4 ~*A,,(4), where A,, has the same definition as in
[4.14] of Liron & Shahar (1978) after setting their R, equal to unity. The alternative
expression

Am(;‘) = 2}'[m— l(lm]m+2 - 1m+:l) + Zmlm(lm— llm+l - Imz) [69]
where each modified Bessel function is evaluated at A, shows clearly the relationship to
the m =0 case and is of assistance in computation.

On solving the above sets of equations for each m and j, with the r.h.s. given by [6.8].
it follows on substitution in [6.7] and then [6.6] that

1
V.= m {Pool (A0 (Apo) — A(LKy + LK)l (A0 (4po) + pol\(4po)Io(ip))

+ (1 = 2(LK, + LK))o(Ap )[o(lpo)}

ke

2) .
- A Sosme {(lm-l + Ly s )PPl s (A0 ) s ((Ap)
o= | m

m N
-2 l:lm- (s 2K+ Ly 1 K i) = 7 Ll Ko + IMK,,,)][pI,, w1(Ap)(2po)
+ pOlm+ I(Apo)lm(lp)] + [(lm—l + Im + l)[l - zm(lm + IKm—l + lme)]

m y
-4 [Im- I(Im Q»ZKM + lm + IKm + I) - I Km(lm + |Im -1 + lm-)]]] lm()'p)lm(lpl))}

after suitable manipulation by means of the recurrence relations and the identities

! :
Ime—l+Im—le=In lm-]Km+|‘lm*|Km_,|=2m/}.' (”I?l).

Also, with A, () defined by [6.9],

=(]2— -1 (0) Polz(ipo)
0, = (12~ L1~ [pip). (31 [ 1(00)
) ) l’olm + 2(;"p0)
-2 Z _A-—A[plmqﬁZ(lp)' Im#l(lp)' [m—l()'p)] 4("” Imfl(}‘pﬂ) Cos maw
meal m( ) l"' - I(APO)

where 4©® is a 2 x 2 matrix of coefficients which is identical to that appearing in the
corresponding Fourier component of ¥, and, for each m > 1, 4 is a symmetric 3 x 3
matrix of coefficients, whose details are omitted here. Thus, with U, and V¥, determined
from U,, V7, by [6.4], it is seen that the symmetric form of U, involves more functions of
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p than that for V,. The first order coefficients U,, V. in [6.1a, b] are given by

J. ( ,)p_,u . V.—E (17)” ,, 4 [6.10]

w=0 w=0

and other quantities in these equations for F,, F. are in principle determined by similar
calculations. Liron & Shahar (1978) showed that, for z # z;, the integrals for U and V in
[6.4] can be expressed as series in which the terms decay exponentially with |z — z,| and
exploited this computational advantage to display several profiles of V - Z, principally for
the axisymmetric case p, = 0. This information is not helpful to the current considerations
which require values of the expressions [6.10] and others for 0 < p, < 1. These integrals
converge rapidly without the need for prior rearrangements and values of V, for various
po are given by Happel & Brenner (1973).

In the axisymmetric case p, = 0, the formula for P, simplifies to that given by Sonshine,
Cox & Brenner (1966) and, by symmetry, Q. vanishes in [6.1b]. After the numerical
evaluation of two integrals, this force formula becomes

1
F. 4
6mpe 1 — 2.10443¢ + 2.0888¢°

1
G-V*—zeG

where the first order correction is the wall correction factor quoted by Brenner (1962) and
the third order coefficient is quoted from Happel & Brenner (1973, p. 318).

7. FLOW PAST A SPHERE
Here S is the sphere R = |, where p = Rsina, z = R cos «, and the axisymmetric flow
W is given by

3 AW 30|
- - -2 7.1
W= 4U.(R, R‘)R+U(l IR 4R,> (7.1]

which, when substituted into (3.20), yields

SN PP B Y VYL Y (L DA VAL
=TIV RETR) | T Ak NG, Tax,) TR B

_UJfL, fou ovy oV (7.2]
R 27\ oz, " dx,) 0z, ’

is an obvious notation.

The spherically symmetric geometry can be exploited by writing the fields U, V as sums
of resolved components of the reflected velocities — V, — U generated by the sphere when
stokeslets in the radial (R) and transverse (&) directions respectively are placed by
(xg. 0, zp), where Ry = (xo? + z,)"* > 1. Then

=gy =-2 il 7 .
U ROU+RO</, v U z [7.3]

at all points of the fluid and the behaviour of U, V near (x,, 0. z,) can be deduced from
the simpler case x, =0. The fields u and v can be similarly written in terms of reflected
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velocities — @i, — ¥ anising from radially and transversely directed dipoles. The tensorial
character of [3.19a, b] and [3.21] enables these to be written in the form

F Fq 3. 1 1 F, 3 1 1
—— eV - — VY = = - —-VF
6nye+6nuc( N +4€v g€ )+6nye( 4€0+4€u 8¢ C)

5

<

| S (R
=W - (U*x + V":')+663V'W+e’<—w w:uer—-Q‘)Q-—;e’Q [7.4]

L 1 F F
=—D curlW=Q*+ -2 . LIPS 3
S 5@ -cur Q +l6nuw cuer+l6m‘w curl U + 0(€?) [7.5]

whilst the substitution of (7.3) into (7.2) eventually yields

v oV o0 1oV U

Similarly (3.15) can be written

[7.6b]

—_— —
Ry, Ry0x, R,

_1(60 1 av G)

The required components of the reflected velocitics U and V and their derivatives at
(x0. 0, z9) = (Ry sin a4y, 0, R, cos ) can be calculated from knowledge of U and V in the
ncighbourhood of the stokeslets when these are placed on the z-axis at (0, 0, R,). Evidently
the Lh.s. of (7.4) can be written in the separated form

Fg 3 N F. 3 1,
.z - — VY kel - = — ¥
Snc (l 4cV_ 4c \% ) + Brpe (l 4cU, 45 v U,)

Xg=0 Xg=0

0= Ry =Ry

after invoking [4.6] and the symmetry of U, and V, with respect to field and stokeslet
positions. Also [7.5] and [7.6a, b] can be written

L l F,
== W-Q*+— ( -curl U)g=0 + O(c>
Spd 2w curl 0 +l6n;z(y cur U):o.,-:o+ (c’)
30z, , av. . Ux, [0U, aV, U, .
= e — _— — [R—— __—+_-._.— o
Q= 3rs R "(azo et TR T T TR 7)o

p=Ry =Ry

=0

0z 0X, 2

=R

where it is still understood that (x, y, o) is set equal to (xg, 0, z,) after all differentiations
have been completed.
In the axisymmetric case, an elementary calculation shows that

1,5 2 2
pd p+&—%)]
V(p, z: 0, z,) = curl - 2 | 3 -5}
(o Z) {[p*z(,2 + (225 — 1)1 [ pizt + (22 — 1)?
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i.e. in the above expressions,

(VVVaV 6V) _( 3 - 23R}’ +5) -13R, -3R, )
0zy" 0, xg=0 R —1" (RE-1) "(R— 1" 2Ry~ 1))

=Ry

For the asymmetric case, an appropriate velocity representation is that used by Ranger
(1973) for flow past a spherical cap, namely

4 l@cosw]+curl|: Rsmw]
sin a

U(p, w, 2, 0, z) = curl’ [s

where

b=vi-3 & -0 (RGe )

and solutions for . ¢, and y which vanish as R— oo are

Wivnx)= i (A, B,,C,)R ~"P, (cos a) sin’ «.

The coefficients are determined by application of the boundary conditions at R =1,
whence it follows eventually that the required quantitics are given by

aU, 3 l 1
U,vu.,y | =)o —— ——— ),
( v ~curl U, 0_0)‘0-0 [2 (Roz—l 2Ruz)

o= Ry

1 ( -4 + 3 3 -3 3 - Ry I
R =1 \(RT—1) " RI=1 2R 2R(RI=1)2 ((Roz—l)’+2Ro’)'

When these results and [7.1] are substituted into [7.4] and [7.5}, the R and & components
of the effective Stokes relative velocity are given by the separate formulae

Fe Z 3 1 Xo €Uz, 45¢°Uz, }
~d2 ST DI 74 3 Pl 4 _
Grpc {RO[U (' T 2R0’> ] R T IR TRRARI-1)

9¢ SOBRI+5)
= 1= 7.
'D «M—n*x%—w] (7.72]

F, X 3 1 % €2Ux,
s )20 2 ey | =2y

Griue { RO[U(I aR, 4Ro’) ] R, TR
_ 3} 3Uto+Q‘ 15¢*Ux, R, + 1
AR(RZ — 1) \ 2R} Y RARI- | RI—1 " 2R}

-‘-l—gc<l—-l+cl o 3+3
‘ BA\RI=1 2R3 T RI-I\(RI—1) #Ri—1) @ 8R,}

(7.7b]




596 A. M. J. DAVIS

and the torque L by

301
9¢ {xo[(./'(l ~—-—-—3)— V‘:I+:OU‘}
Lo —(3U"°+Q~)+ o AR +0(c))

8rue’ 4R, 9 l 1
l6R0~(R0" — l)|:l - g( (—R7-—-—l - ‘ﬁ:’)]

Again the accuracy of the third order truncation can be assessed because an exact
solution for the axisymmetric flow is available from the analyses of Stimson & Jeffrey
(1926) and Davis (1978). These provide a comparison for the force coefficient estimates
obtained by setting U* =0 = x, in [7.7a], viz

(7.8]

3 ] U 45¢'U
Ull—s-+ 5|~ V't 55—
F. < 2z, 2:‘,»‘> + 250 85z = 1)

6mue | %¢ 30+ 9)
4(:0: —~1) 2Az-1)

[7.9]

Values are displayed in table 2 for the independent cases of a moving sphere in quiescent
fluid (U = 0) and a fixed sphere in streaming flow (* = 0), both in the presence of a fixed
larger sphere. Agreement is good whenever the gap between spheres exceeds the smaller
radius (z, — | > 2¢). The smaller values in the last two columns arc due to the smaller
sphere lying in the vicinity of a stagnation point on the larger sphere.

Table 2.

Values of & FjomulV *c when U =0 Fj6rule when ¥ =0
at spheres ¢ 2o 7.9} Exact [7.9) Exact
- 0.1, 3 0.0099 1,106 - 111120 - 1.11205 0.014772 0.014771
0.1, 2 0.0276 [.109 — 1.3569 - 1.3608 0.01890 0.01894
-0.1, 1.5 0.0470 1.116 - 1.6709 ~ 1.7094 0.02472 0.02533
- 0.1, | 0.0852 1137 —2.2063 - 2.6002 0.03495 0.04287
—0.3, 3 0.0304 1.351 — 1.0899 - 1.0900 0.10108 0.10107
-0.3, 2 0.0840 1.361 —1.2763 - 1.2786 0.1229 0.1230
-0.3, 1.5 0.1430 1.382 — 1.4993 - 1.5210 0.1523 0.1543
-0.3, 1 0.2591 1.445 - 1.8505 - 2.0481 0.2067 0.2293
-0.5, 3 0.0520 1.651 - 1.07250 - 1.07252 0.21759 0.21758
- 0.5, 2 0.1437 1.668 —1.2163 - 1.2178 0.2541 0.2542
-05 15 0.2447 1.703 ~ 1.3793 - 1.3920 0.3015 0.3037
—-0.5, { 0.4434 1.812 ~ 1.6198 - 1.7266 0.3884 0.4113
-1, 25 0.1942 2.734 - 1.0719 - 1.0720 0.510780 0.510780
-1, 2 0.3240 2.762 ~ 11215 - 11220 0.5405 0.5406

- 1.2028 — 1.2065 0.5957 0.5969

-1 1.5 0.5519 2.841

Evidently in the region p*+(z — 1)’ = O(6°) where ¢ <1, the flow ficld W has
velocities of order Ud® and to this order is a stagnation flow at a plane. Indeed, on
introducing the rescaling

. 3o, .
Xy = 0%, 7= 1+ 03, € = ¢, 3 Ud*=A, Q* =Q"°

into the formulac [7.7a,b]. [7.8] and letting 6 —»0. the corresponding stagnation flow
formulae [5.6a.b] and [5.5] are recovered.
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8. FLOW THROUGH A HOLE IN A PLANE
Here S'is the region p > 1 of the plane = = 0 and W is the pressure driven flow described
by Happel & Brenner (1973, section 4.29). Thus

(sinvsinh 15 + cosv cosh 4 #)cos? v
(sinh® A 4 cos® v) cosh 4

(8.1a]

where 4, v are elliptic coordinates defined by p = cosh 4 sinv, z =sinh i cosv(0 < v < n/2,
— a0 <4 <) and UZ is the velocity at the origin, i.e. the center of the orifice. The
corresponding pressure p, is given by

sinh 4 s
= __me - 8.
Pe= —2uU [Sinhz T oo, Htan ! (sinh A )] (8.1b]

In particular

90

W(0.: )———+"—T. 2.0, -)—-2;40( +l+tan )

and hence the axisymmetric formula [3.23] becomes

F. U 2 5 av,
LIRS S 74 JF R I —et—Z¢?
6muc { + (= + l)’l: o1 3€ 2¢% 6.0]}

3., 0 1,
—[I—Z(V:'i'z( (U_."zv V:>] [8.2]

Now, according to Davis, O'Neill & Brenner (1981), the reflected velocity in this axisym-

metric case is such that
0 J
Viim|2z2—— Zo— — 8.
( 7 I>< O 1>F+zzoG [8.3]

where Fand G are harmonic functions of p, z given by

2> % s sinks
2 )y= = - k< ., 4;
Flp,zi2) == f e~/ (kp) fl ydsdk (8.4a]

]

z k © — 2
Glpoziz) =2 f e~ (kp )[ sin ok J (z° Scosks ds] dk.  [8.4b]
0
The reflected velocity due to the corresponding dipole singularity can be similarly shown to

have Z-component
voie— za l O*F ’66
oz 0z 0z,
and hence, since F(0, =; ;) and G(0, z; z,) are evndemly symmetric, it follows from [8.3] that
v, = — V¥V, in the force formula [8.2] as predicted in section 4. Further, by observing that

(8.3] also implies

i)
E(V == zV(V )+ 2,G
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and exploiting the simplified form of [3.16} for a symmetric function, all the required
quantities in [8.2] can be calculated from knowledge of

V.=(V-3) 3 ltan"‘+ : 4
SR 3 PN I R T V5

(Davis et al., 1981, equation C6) and

(zo —s) 8 [ s 4
G0.7:20) = {(-<,+1) J ) }";f, <T) ds

ov. 3 |uml_+ | 2 16
0z 2m5,| = VTIIFL G4 3G+ 1)

Hence

~

1 4 |1 1 2 =
v, =z VIV, =—| —tan"' 5+ — —s _I?O < 1
2 - WAl G H1)E 3+ D

“0

The numerical collocation technique has been successfully applied to this axisymmetric
problem by Dagan, Weinbaum & Pfeffer (1982) and to its disk counterpart by Dagan,
Pleffer & Weinbaum (1982). The first mentioned authors constructed, for each half space,
stream functions in terms of the unknown velocity profile at the orifice, matched them
analytically to secure continuity of the kincmatic and dynamic fields and then used the
collocation technique described in detail by Ganatos, Pleffer & Weinbaum (1978) to satisfy
the non-slip boundary condition at the surface of the sphere. Comparison of the two
methods can now be made by setting U = 0 (sphere moving in quicscent fluid) or V* =0
(pressure driven flow past a fixed sphere) in [8.2] in order to obtain force cocfficients
corresponding to those displayed in tables 6 and 10 respectively of Dagan et al. (1982).
Agreement is remarkably good, except near the top right corner of table 3.

Table 3. Values of the force coeflicients F.j6rud *e (quicscent fluid) and F/6ruUc (fixed sphere)
given by formula [8.2] for various sphere radii ¢ and sphere-to-orifice spacings zy/e

e € =01 ¢=025 (=05 ¢=075 «=10 =25 «=50

. 1.0516 1.1581 1.4593 1.8755 2.2659 2.8368 2.8380

' 1.0321 1.0264 0.88548  0.82319 1.0681 1.2348 0.42048

125 1.0519 1.1626 1.4728 1.8675 2.2077 2.7587 2.8302

- 1.0288 1.0091 0.86220  0.84774 1.0248 0.76717  0.24261
1.0526 1.1702 1.4872 1.8315 2.0863 2.4682 2.5059

15 1.0225 097746  0.81957  0.79972  0.82430  0.36395  0.10522

) 1.0542 1.1849 1.4843 1.7132 1.8396 1.9856 1.9981

B 1.0068 0.90589  0.70094  0.57509  0.45763  0.11621 0.030870
1.0582 1.2030 1.4080 1.4920 1.5238 1.5517 1.5537

3 0.96434  0.74631  0.43752  0.26310  0.16785  0.030874 0.0078586
1.0626 1.2028 1.3247 1.3573 1.3676 1.3757 1.3763

4 091014  0.59098  0.26860  0.14027  0.083788 0.014294  0.0036043
1.0667 1.1909 1.2618 1.2762 1.2804 1.2835 1.2837

5 0.84824  0.46045  0.17554  0.086043 0.050131 0.0083269 0.0020924
1.0701 1.1745 1.2166 1.2238 1.2257 1.2272 1.2273

6 0.78250  0.35951  0.12219  0.057996 0.033391 0.0054771 0.0013740
1.0735 11424 1.1590 1.1613 1.1619 1.1623 1.1623

s 0.65181 0.22793  0.068195 0.031411 0.017892 0.0029016 0.0007268

10 1.0730 11173 1.1248 1.1257 1.1259 1.1261 1.1261

0.53485  0.15383  0.043220 0.019647 0.011139 0.0017975 0.0004499
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In contrast to the examples cited in the previous three sections, no simplifications of
[3.1913.21] are available for the off-axis sphere. W is given by [8.1] and the reflected
velocities U, V and hence Q by the results of the next section. A practical aspect of this
asymmetric problem has been provided by Dagan, Pfeffer & Weinbaum (1983) who, by
experimental verification and an approximate theory based on reasonable estimates of the
force and torque coefficients, showed that the trajectory of a neutrally buoyant sphere
departs significantly from the undisturbed fluid streamline in the vicinity of the orifice wall
as the opening is approached and that in multi-particle flow into the pore, the particles
tend to aggregate near the orifice wall. The pressure driven flow [8.1] provides an excellent
model of the basic fluid flow near the pore.

9. ASYMMETRIC FLOWS DUE TO A STOKESLET PLACED
NEAR A HOLE IN A PLANE WALL

The reflected velocity fields — U(p, w, =; po, 29) and — V(p, w, z; po, 2¢) satisfy [2.1],
vanish at infinity, remain bounded as (p — 1)*+ z?—0 and on the wall take the values
prescribed by [3.14], i.e. with r2 = p2+ p> — 2pp,cos w + =2,

V=%—-;—g[pﬁ—p0(ﬁ COs @ — @ Sin W) — 24%)

0\Z @ [ph— pop cosw — & sinw) .
('“"’a—.-(,)F*a:.,[ . atz=0,p>1 [9.1a)

p COsSw — @ sinw e — P COS W), . . . .
u=" -([° pl )[pp—po(pcosw-wsmw)—:o:]

r

N + 0 [pp — pup cosw — & sinw)
“apo\r) " Ips r

+::'-(ﬁcosw—cbsinw) atz=0,p > [9.1b)

The normal components of {9.1a, b] give rise to velocity fields whose Z-components are
even functions of z and which have representations of the same form as in the axisymmetric
case. The tangential components of [9.1a, b] excite velocity fields whose F-components are
odd functions of z and hence zero over the whole plane z = 0. Thus write

V= (l -2 5—‘2—) (F; —z grad F) +L WM +0vd + whisgnz)e Hldk  [9.2a)
~0

0

U= -z, P (Fi—zgrad F) + f u?p + vPd + w2 sgnz) e~ dk [9.2b)
0

[}
where F(p, w, z; p,. 2p) is an even function of = which satisfies Laplace’s equation.

_&F 10F | OF OF

ap2+;%‘+?m+§=0 [9.3]

VF

everywhere except at points on the wall (z =0, p > 1) and the boundary conditions

F(p, ,0; py, 20) = (p* + po? = 2ppycos w +2o)~"® for p>1 [9.4]

F=0[(p+2)~"" as pl+4z2>oc0. [9.5]

MF Vol. 9 No. —I°
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Also the remaining velocity fields in [9.2a, b] are such that

(um+ 'y dk = P__p_(__“—'
6-., r

when p > | [9.6}

14 o —_ =i 9

(u(Z) + il.(ll) dk = __(__ p—p€ + Ze-w

0 (:p() r r

f (" + itk dk =0 when p<l (j=1.2) (9.1
0
j wdk =0 forallp (j=1,2). (9.8]
]

Consider first the function £ which physically is the reflected potential that arises when
a unit point charge is placed at (p,. 0. z,) in the presence of an earthed perfectly conducting
wall (z = 0) which has a hole of unit radius (p < 1). [t can be calculated by solving the set
of mixed boundary value problems that are obtained by using the expansion

- = (p‘- + p(). - prl) Cos @ + :()-) s = Z (m COs @ J ¢ A-"‘Im(/‘p())‘lm(/“) ) d/' [99]
it

r m =0

valid for z, > 0. By suitable superposition, the solution for Fis cvidently then given by

F(p, @, z; py.20) = Z €,, COS m(uJ‘ J “Kidedsag (kp) (Apa,k, A)dk di [9.10]

m—0
provided, for cach m > 0,

)]
in order to satisfy (9.4) after substitution of [9.9] and
J kak, i), kp)dk =0 (p <) [9.11Db]
0

for an even function of =. By comparison with the solution [4.2.23] of [4.2.15/16] given by
Sneddon (1966), it then follows after use of the Sonine integral

2 ‘Jv(}.l?dl = _TIT Jv_‘liz,(fp) [912]
. L’ '\/(f'—ﬂ') 2/ pv 42y

(Sneddon, 1966, cquation 2.1.32), that the dual integral equations [9.11a, b] for cach of
the set of functions {x,(k, A); m >0} have solution

ak. i) = J(ki) f 5o vam KW can(As)yds  (m 2 0), [9.13]
H

which integral exists only in the generalised sense. The result
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f "R, kO ko) dk = [ (E)M [9.14
0

L { AN /lz—pz

(Sneddon, 1966, equation 2.1.20), where H(x) denotes the Heaviside unit function,
provides verification that [9.13] solves [9.11a, b] for each m > 0. Expression [9.10]. which
reduces to [8.4a] when p, =0, can be written

F(p, . 2: pp.5) = 3, €,COS MW f . |2]: sYoulpo 20 5) ds, [9.15)
m=0 {
where
JAp,zi8)= I A e % (ApWyanfds)did  (m =0). [9.16]
0

Evidently Fis a symmetric function of the field and source positions (p, w, =) and (p,, 0, =,).
Alternative forms of F are given below by equations [10.6] and [A3].
Now consider the integrals in [9.2a, b}. If the corresponding pressures are written

_ 0 oF %0 m k]
p.=2p (-05;) l) a:+L pMe*dk

P = 2;¢:0-£- il_: +| p@e-tHdk
Opy\ Oz 0

and the Fourier serics [6.7] are introduced, then, as in section 6, the cquations of motion
[2.1] imply that for each ficld (suffix omitted for convenience):

Pm =204, (k) (kp)

| (m=20)
Wy = — qm(k )p‘lm + I(kp) + E rm(k)‘,m(kp)
1
i Uy + Uy = — qm(k)meo- 1t I(kp) + Esmt(k)‘,mt l(kp)
(m=1)
1
qm(k) +§'[S,,,*(k) + Sm-(k)] = rm(k)
|
Uy = = qulk)pJolkp) + sk} kp). so(k) = ry(k).

The boundary condition [9.8] implics, provided g,(0) = 0 which is subsequently verificd,
that

1
£ ralk) = GLk) + T auk)  (m > 0)

and hence in {9.2a, b]

J wid sgn : et dk = ij p(/)e—kl-'l dte (j=12) 9.17]
0 2# 0
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Further substitution for r,(k) then shows that

mlk ,..
um+vm k dk[q (2) m»l(l‘ )]+‘_/§——)‘Im+l(/‘ )

uk

d S,k
= = = o [0 (K Qi)

[9.18]

where S, (k) =4s, " (k) — 5,7 (k)] (m = 1)
Now, from [6.7]:

x
u+ic=u+ Z [, +v,)e™ + (u, —rv,)e ™|

m=1

and, from [9.9] and the recurrence relations, it may be shown that

) — e T r , ey -
Lﬁ—*f{ZM%WAMG‘Z
0

r m =0 m=1

. d ..
X Jm(ﬁ.p(l)tlm - l(/'l’) (M - ”m"} a“;“ [ — ] V3 dl‘..
Hence conditions [9.6] imply

J ) ("m + l‘m)p)| dl" == J 7 [‘Im(l) - em()‘ )]‘Im + l(}‘p) d;'
4] 0

mz=21)

.[°(um—-umn,ldk =.[“[¢41)+-axznfm-xzp>dz 9.19]

("u),. S dk = — J‘ dy(A),(Ap)di
0 0

where

d,M2) = Azy e~ (Ap,) (m 2 0); e NA)=0 (m21)
[9.20]

7 .
dNA) = (1 = Azg) e~ (Apy) (m 20); e, A)= f:T"e"""/m(iPo) (m=1)
“Ho

The determination of gq,(k) is now straightforward because, on substitution of [9.18],
conditions [9.19] and [9.7] yicld the dual integral equations

J‘Dk"qo(k)-’n(kp)dk =J'. d(A)\(ip)di (p > 1)
0 0

jEMVMMM=ow<n
0

which by comparison with [9.11a, b} have solution
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k~qolk) = J‘ " a (k. A)dyi) di (9.21]

0

where a,(k. 1) is given by [9.13]. When p, =0, V is axisymmetric and the only non-zero
contribution to the integral in [9.2a] arises from d,'(i)=/iz,e™“". The resulting =-
component of velocity is

z f 2"k )Wolkp) e dk = =z, 'f j kia,(k, ) e~ "+ (kp) dk da
0 0

0
and. in agreement with the quoted results of section 8, reduces to z2,G (p. =; ). given by
[8.4b), after substitution for a,(k. ) and subsequent manipulation.

However. for each m > 1. the integrations by parts necessitated by the substitution of

expressions [9.18] into conditions {9.19] and [9.7] yield a connected pair of dual integral
equations for S,(k) and ¢.(k), namely

j [S.(k) = 3,0k Ws (kp) dk =0 (p < 1)
ﬁ "k S) = 20,00 ) 0k = = f ") = eadW o G) 02 (0> D)
and
f( 18,060+ 40 kp) bk =0 (p <)

f k'S (k) - \(kp) dk =J [da(2) + eV, i(2p)dA (p > 1)

[} 0

If thesc are regarded as disjoint dual integral equations for S,(k)-— 3¢,(k) and
S,.(k) + ¢.(k) respectively, then by comparison with [9.11a, b], it follows that

o

Sak)—=3q.k)=—k J‘ Ay (K A (A) + 27 g, (4) — e, (A)] dA

0

L

Salk) + g (k)=k f A (K A (A) + 27", (4) + e,(4)] dA [9.22]
0
Thus, by subtraction, the following Fredholm integral equation for k ~'g,(k) is obtained

4k =g (k) = J'x (- 1(ko 2) + dp y (ko AN(A) + 47 'q,(4)] A2
0

+ f ks 2) = ap (ke Do) di 9.23]

Now, by suitable differentiation of the identity

Ty~

f J(ki)d,_ (Ar)dit = ’—A— H(k = ).
0
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(Gradshteyn and Ryzhik. 1980, section 6.512), it may be shown that

fl tJ(ke)J (i) dr = kl Ok —4) [9.24a]
0

v =

kv*l

f tJ,, (ke),_(A)de=2v H(k —}.)—l%é(k - 4) {9.24b]
0

where d(x) denotes the Dirac delta-function. The results [9.24a, b] respectively are
sufficient to deduce that

J‘K a,(k, pa,(u. A)du = a,(k, 1) (m =0) {9.25a]
[}]

J‘l a, (k. wa, (. A)du = a,, _(k, 1) m=1). [9.25b]
)
Then it follows simply that the solution of {9.23] is

k=g (k)= %f ' Ra, (k. A)+a, , (kD) (A)d4
)

{

l r
+ 3 f [a,, (k. i) —a,,, (k, A)]e,(4)dA. [9.26a]
e 1]
By substitution in [9.22], the other mith function required below is given by

) *
k= US,(k) = q.k)) = gf [ Ak, A =, o (K,A)Jd(4) A
)

(

l £
+ ‘iJ [, (ks 4) + 2a,, (ko A)]en(d) dA [9.26b]
< Jo

The end result of the above calculations is that the integrals in [9.2a, b] have the Fourier
series expansions

f / (up +r> + wisgnz) e~ dk
0

x * c S k)—q.lk) m e
=5 c,,,cosmwj [MJ,',,(kp)(l —-/\'I:!)Jr—’—(—)——_——q—(——2 -—_—J,,,(kp)]e el dic
ma0 0 I\' k /\p
- - - - ‘lm(k) . m A L]~ Sm(k)—qm(k)J: /\' » ~ kjz| dk
-2 3 sinmo f [ ). 2tk =kl + L 1 e

1 4 £ b
+:3 Y €.cos mw J Gk ) (k) e~ dk (9.27]
0

m=0

where {g.(k);m >0} and {S.(k)—gq.(k);m =1} are given by [9.21] and [9.2§a, b,
{a (k. 2),m >0} by [9.13] and the functions {d,(1). m > 0}. {e,(4);m = 1] appropriate to
the two velocity fields by [9.20].
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With the aid of [9.27]. an inspection of the Z-component of [9.2a] and the g-component
of [9.2b] makes it evident that V, and U, are, as in section 6, symmetric functions of the
field and stokeslet positions (p, w, =) and (p,, 0, z,). The reflected velocity £ is determined
by substitution of [9.2a. b] into [3.15].

10. MODIFICATION OF SECTION 9 FOR A DISK

If instead of the plane with an orifice. S is the complementary boundary, namely the
disk. then conditions [9.1a, b] apply at p < | and the solution forms [9.2a, b] remain valid.
The function E, appearing instead of F, is given, as in [9.10], by

E(p.w.z:pp2) =) €,c08 mw f f e~ ®d+40 1 (kp)J (Apo)bn(k. A)dk di [10.1]
=1 0 0

m=

provided, for each m > 0.

f " bk, ) ko) dk = Jo(Ap) (o < 1)
[+]

. [10.2]
J; kb (k. A} (kp)dk =0 (p>1).
With the aid of the other Sonine integral
ﬁ J.(m% = J55P" P raatip) [10.3]
(Sncddon, 1966, equation 2.1.29), the dual integral equations [10.2] have solution
bk, 1) = Jk2 J; ' - 1k~ f(A5) ds  (m = 0) (10.4]
verified again by [9.14]. Then, like [9.15] and [9.16], [10.1] can be written
E(p. w, 25 py. 20) = Zio ¢,, COS mw LI sen(p, [2]; $)emlpor 20 5) ds,
where
en(p,2i8)= J;m A e (AP _aafAs) dA (m=0) [10.5]

Estimates of £ near - =0 for p > | can be obtained by using [10.3] to write [10.5] in
the form

em(p‘ s S) = -’ZE J‘ ll/zlm—(l/z)(b)Km(j'p) Cos }5: d)n

0

valid for - >0, p > 1 and 0 <s < 1. By similarly writing [9.16] in the form

Slp.zi5)= ;tz- '[ ‘ AL anAs)K(Ap) sin Az dA,

Q

valid for - >0, p > | and 0 <5 < 1, estimates of F near the plane can be obtained after
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using [9.24a] and the summation [9.9] to rewrite [9.15] for - >0 as

Flp,w, 2 py 29) = [.0: +py - 2ppacos @ + (2 + 5] ?

I |
- Y ¢,cos m(uJ‘ S0 |21 8) S0 20 5) ds (10.6]
m=10 ]

i

[n the second part of the solution. the only change necessitated by the interchange of
the ranges of validity of conditions [9.6] and [9.7] as far as [9.25a] inclusive is the
replacement of a,(k, 4) by b,(k, 4), given by [10.4]. for each m > 0. However, since [9.25b]
is replaced by

f b (kb (o 2)dpe = b, (k, 4) (m = 1),
[}]

the net effect of the changes on the solutions [9.26a. b is that, for each m 2 1. ¢, _ (k. £)
is replaced by b, , (k. A). a, . (k.A) by b, _({(k.4). S, (k) —gq,(k) by ¢, (k)= S,.(k) and
e, (i) by — ¢, (i) whilst ,(4) is left unchanged. Thus

k- lgok) = f " bk, A ) di

kg k)= ;f l (P (K 2)+ 26, (kAN (A)dA

(

1 [ \ . o
+ 3] (b Ak A) = b, (K, L)]e,(A)da

] 1
k ‘ ‘[‘S'/u(k) - qm(k )] = gJ‘ [bm - l(k~ /.') - bm + I(kv ;' )]dm(;' ) d}'

[§

+ % f 126, _ (k. A)+ b, (k, A))e(A)dA mz=1
1]

are the results required for substitution in [9.27) and the symmetry of V. and U, with
respect Lo (p, o, z) and (p,, 0, z,) is again apparent.
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APPENDIX
An alternative form of F(p, w, =; p,. 2,) can be readily constructed in terms of toroidal
coordinates, the natural system for the given gcometry, and consists of a sum of separated
solutions of [9.3] which involve the Mchler conal functions K = P _[", . Thus, on writing

sinh & sinn

with p,. =, defined similarly in terms of &,. n,. it follows that

2[cosh £ cosh &, — sinh & sinh &, cos w — cos (1 — n,)]
(cosh & — cos n) (cosh &, — cos n,)

PP+ pd = 2ppycosw + (2 — z) =
(A1}

Now, according to Zhurina & Karmazina (1966. equation 5.8), the inverse of the distance
r between the singularity (p,, 0. 2,) and a point (p. @, 0) (p > 1. i.e. n = 0 or 2n) on the wall,
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is given by

=(p  + py’ — 2ppycos w + z,°) " = (cosh & — 1) (cosh &, — cos n,)"?

N

“ cosh s(m - n,) z .
— m m h -m = . 2
x ,[) B — ds ,..go e.{— 1Yy"K™ (cosh &)K,”™ (cosh &) cos mw [A2)

K "(cosh¢) T(—m~—is) (=" (mz=1).

— = = T ) = m 2
K (cosh$)  TG+m —is) n[s2+(r-%)]

r=1

The formula [A1] enables the corresponding expansion for the inverse of the distance
between (p,. 0, z) and (p. w, z) to be readily written down, if required. Further. since
(cosh & —cos n)’e ™K, (cosh &) cos mw satisfies [9.3], it follows that F(p, w,z: py 2)) is
given by

x
F = (cosh & ~cos )" (cosh & — cos ny)"* ¥ ¢, cos me

m=

* cosh s(n — n)cosh s(n - n,)
0 cosh® s

K. (cosh £)K" (cosh &) {A3]

)

with the symmetrical dependence on the field and source positions again apparent. In the
axisymmetric case p, =0, ie. =0, this expression reduces, because K(1)=1 and
K"1)=0 (m = 1), to the form given by equations [3.1], {3.2] of Davis et al. (1981).
Unfortunately the practical use of the formula [A3] for F is likely to be restricted by the
limited knowledge of the values of the conal functions.

For the complementary problem involving the disk, the toroidal coordinate lics in the
range — 7 to 7 and the corresponding form of [A3] is obtained by replacing n — ., n — 1,
by 1. n, respectively.




